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LE'LTER TO THE EDITOR 

Polymer coil-globule transition by real space renormalisation 
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Theory and Computational Science Group, AFRC-IFRN, Colney Lane, Norwich NR4 
7UA. UK 

Received 13 November 1986, in final form 16 February 1987 

Abstract. A simple real space renormalisation scheme is proposed for the statistics of the 
polymer coil-globule transition in two dimensions. This approach describes the coil, 0 
point and globular states of the macromolecule within a single two-parameter transforma- 
tion. Results from a small-cell calculation include the @-point size exponent, ug = 0.494, 
and crossover exponent 9 = 0.486. 

There has been extensive interest during the last decade in the theoretical study of the 
coil-globule transition in a polymer molecule in solution as induced by the change 
from a good to a poor solvent (see, e.g., Sanchez 1979, Saleur 1986 and references 
therein). Since in actual experiments on polymer solutions demixing often replaces 
macromolecular collapse, a partial motivation for these studies lies in the analogy 
between the coil-globule transition and the folding/unfolding of globular proteins 
(Moore 1977, Volkenstein 1977, Obukhov 1986). In the case of a protein molecule, 
the folding transition, which partly determines the biological functionality of the 
molecule, is induced by the aggregation tendency of the solvophobic residues in the 
primary structure of the chain (Dill 1985). A drastic simplification, but a necessary 
first step in the understanding of the folding transition, is therefore the situation where 
all monomers have the same affinity with the solvent. In this case, there is general 
agreement that the collapse to a globular state can be modelled by a change in the 
sign of the monomer-monomer excluded volume interaction as the temperature is 
lowered below the Flory compensation point 8, for example (de Gennes 1979). The 
presence of repulsive three- and higher-body interactions prevents collapse of the chain 
to unphysically high densities. 

This line of thought has led to a description of the coil-globule transition in terms 
of a crossover phenomenon formally related to that occurring in a magnetic system 
near its tricritical point (de Gennes 1975, 1978, 1979, Stephen 1975). There are, in 
principle, three ranges in temperature (or other variable driving the transition), with 
the molecule's size 6 behaving asymptotically as: 

6 - N U S A W  for T >  8 

6 -  NYe at T = 8  

6 -  N"G for T < 8  

with a smooth interpolation between the high-temperature (coil or self-avoiding walk, 
SAW) and low-temperature (globular, G )  regimes. Analytically, this can be expressed 
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in terms of a scaling form for ( ( N ,  T ) :  

where N is the polymerisation index, w - T - 0 is the strength of the monomer- 
monomer short-ranged interaction and F ( x )  and 4 are the crossover function and 
exponent, respectively, such that for x > 0 (SAW phase) 6 diverges with an exponent 
vSAW, whilst for x < O  (G phase) 6 diverges with a new exponent vG ( = l / d  for a dense 
space-filling molecule). Since in d = 3 the exponents ve and 4 take up classical values, 
the novel situation arises in two dimensions, where the evaluation of these exponents 
has been the subject of intense theoretical investigations following the experimental 
work of Villanove and Rondelez (1980) on polymer monolayers. 

In this letter I will introduce a novel lattice approach to the polymer coil-globule 
transition in two dimensions, giving some estimates for the exponents ve and 4. 
However, the main purpose of this work is to provide a simple, yet efficient, statistical 
treatment that can be implemented to study more realistic models of protein conforma- 
tional phase transitions in the bulk as well as at interfaces, where the connection with 
the functionality of cell membrane proteins can be achieved. The model I propose is 
a lattice random walk consisting of N >> 1 steps where suitable constraints are imposed. 
In the coil phase only configurations that are self-avoiding walks are accepted, whilst 
in the globular phase only configurations with two (but not three or more) monomer 
contacts are considered. In figure 1 examples of SAW and G configurations are given, 
and one can see that, for the same N, more compact structures are achieved in the 
latter case. 

( a )  lbl 
Figure 1. Examples of self-avoiding ( a )  and globular ( b )  configurations on the triangular 
lattice. Both configurations have N = 150 links. 

In order to solve the model asymptotically for N + 03, I will employ a real space 
cell renormalisation scheme that has the advantage of simplicity and efficiency. It is 
easy to convince oneself that self-avoiding and self-attracting walks can be easily 
accommodated on small cells of the triangular lattice. In one approach (Family 1980, 
Redner and Reynolds 1981) one considers all configurations starting from a chosen 
site of the cell (e.g. a corner) and spanning the cell in at least one chosen direction. 
Figure 2 shows the bare and renormalised cells employed in this work, with a rescaling 
factor b = 2 .  Following Redner and Reynolds (1981), I introduce a monomer fugacity 
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Figure 2. Bare and renormalised cells used in this work. 

K and a cell partition function Z ( K )  enumerating all possible SAW or G spanning 
configurations: 

{cell) 
Z ( K ) =  1 a,K" 

n 

where a, is the total number of n-step configurations. A recursion relation K ' = K ' (  K )  
is generated by imposing that the cell partition function is conserved in the renormalisa- 
tion process: 

Z'( K ' )  = Z( K ) .  
A number of uncontrolled approximations is introduced in this way (for a partial 
discussion see the articles in Burkhardt and van Leeuwen (1982)).  However, improve- 
ment on mean-field theory results is generally expected and the asymptotic properties 
of the polymer chain are obtained from the relevant fixed point K = K ' =  K *  of the 
recursion relation through 

p = 1/K* 

v =In blln A A = dK'/dK I K *  ( 2 )  
where p = limn+m ( L I ~ / U , . - ~ )  is the effective lattice connectivity of the polymer chain. 
For the present cell, figure 2, one has 

for SAW configurations (figure 3 )  and 
ZsAw( K )  = K 2  + 6 K  + 17 K + 15 K S  + 4 K  (3 )  

Z G ( K )  = &l(  K ,  +&2( K ,  + Z G 3 ( K )  +&4( K ,  
Z G , ( K )  = 2 K 5 + 1 6 K 6 + 2 0 K 7 + 1 0 K 8  

Z G 2 ( K ) =  K 6 + 6 K 7 + 1 4 K 8 + 9 K 9  (4) 
ZG3( K )  = 2 K 9  
Z G 4 ( K )  = K 9  

for G configurations (figure 4 ) .  It should be noticed that globular cell configurations 
are such that at least one possible site in the cell hosts a monomer-monomer contact. 

Figure 3. Some of the configurations contributing to .?&,.,(IC). 

Figure 4. Some of the configurations contributing to Z , ( K ) .  
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An exceedingly dense molecule will result if all sites are imposed to host such contacts. 
In (4), Z G M ( K )  refers to globular cell configurations containing M contacts. The 
renormalised partition functions are: 

ZgAw( K ’ )  = K ’  + 2 K ”  

Z & ( K ’ )  = K ’ + 2 K ’ ’ +  Kf3 .  

Using the relations of ( 2 ) ,  the following results are obtained: 

SAW phase: 

G phase: 

K*=0.318, p=3.146, A=2.413, u=0.787 

K*=0.558, p=1.790, A=3.915, u=0 .508 .  

The SAW exponent uSAW = 0.787 should be compared with the (conjectured) exact value 
uSAW = (Nienhuis 1982). A comparable direct decimation approach on the triangular 
lattice (Napiorkowski er a1 1979) yields pSAW = 4.828 and uSAW = 0.708. The results 
for the G phase represent new estimates; the exponent vG = 0.508 is an approximation 
for the compactness exponent uG = l / d  = 4, which is believed to be exact for dense 
polymer globules (Duplantier 1986a). 

In order to study the 6 point and the coil-globule transition, it is now convenient 
to set up a two-parameter renormalisation recursion relation by introducing a variable 
f; OsfS 1, representing the probability that one of the possible sites in the cell is the 
host of a monomer-monomer contact. The variable f may depend on temperature 
through exp(-E/kT), where E < O  is the relative attraction energy between two 
monomers. The special values f = 0 and f =  1 will then represent the high- and 
low-temperature regimes, respectively, whilst the 8 point will correspond to an inter- 
mediate value fe, so that, near the 6 point, one has w -fe -f in (1). The full cell 
partition function is now: 

Z ( K l f )  = (1  - f ) 4 Z s A w ( K ) + Z G ( K l f )  

ZG(K If) = f Z , , ( K )  + f 2 ~ C i * t  K 1 +f3ZG3(K 1 +f4ZG4(K) 
(6) 

for the bare cell and 

Z’(  K ’ l f ’ )  = (1 - f ‘ )Z&Aw( K ’ )  +f’Z&( K ’ )  (7) 

for the renormalised cell. A renormalisation recursion relation for f can be defined 
by asserting that only bare cell configurations with at least one f site contribute to the 
renormalised cell f’ site. There is a configurational weight f M (  1 -f)“-” and a 
normalisation in order to preserve the probabilistic nature off  and f’: 

Equations (6)-(8) guarantee that the coil and globule recursion relations are recovered 
in the f = O  and f =  1 limits. These equations, together with (3)-(9,  give rise to a 
two-parameter recursion relation K ‘  = K ‘ ( K , f ) , f ‘  =f’( K , f ) ,  and generate the flow 
given in figure 5 .  There are three relevant fixed points, those with f” = 0 and f” = 1 
corresponding to the SAW and G phases, respectively. The third fixed point is to be 
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Figure 5. Global flow diagram of the two-parameter recursion relation. 

identified with the e multicritical point and is unstable in all directions. Its parameters 
are as follows: 

8 point: f* =0.828, K *  =0.582, p = 1.717, A ,  =4.069, 

A 2  = 1.977, v = 0.494. 

The crossover exponent is therefore given by 

4 =In h2/ln hl  = 0.486 

where hl  and A* are the eigenvalues of the linearised recursion relation matrix 
a ( K ’ , f ’ ) / a ( K , f )  evaluated at the 8 fixed point. The present estimates for Ve and 4 
are to be compared with the results of a number of different approaches. A two-loop 
E expansion yields (de Gennes 1975, Stephen and McCauley 1973, Stephen 1975) 

Ve = $+&E’ =0.505 
4 = 1 + L  2 2 2 ~  =0.636 

for E = 3 - d = 1 (see also Kholodenko and Freed 1984a, b, Duplantier 1982, 1986b). 
Extrapolation of exact finite-size estimates gives V, = 0.55 f 0.01 (Derrida and Saleur 
1985) and 4 =0.48*0.07 (Saleur 1986). Series expansion estimates include ye = 
0.503*0.01 (Ishinabe 1985) and ve = 0.535i0.025 and 4 = 0.64k0.05 (Privman 1986). 
Numerical simulation studies (Baumgartner 1982, Tobochnik et a1 1982) yield similar 
values. A conjecture (Jan et a1 1986) identifies Vg with the exponent of the infinitely 
growing SAW, vIGSAW = 0.567 f 0.003 = (Kremer and Lyklema 1985). Also, experi- 
ments on polymer monolayers (Villanove and Rondelez 1980) lead to v8 = 0.56 * 0.01 
(see also Duplantier et al 1986). Therefore, the present small-cell real space calculation 
does well in predicting the correct phase diagram and the value of the 8 crossover 
exponent 4. However, the situation for pe and Ve is less satisfactory, since one should 
have > vG. It is likely that better estimates will arise from larger cell 
calculations. 

In conclusion, I have proposed a novel lattice model for the statistics of the polymer 
coil-globule transition. The model gives reasonable results in two dimensions and is 

> pG and 
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simple enough for extension to three dimensions and to inhomogeneous environments 
and polymer composition. 
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